20. Express the Vigenère cipher as a cryptosystem.

To break a Vigenère cipher by recovering a plaintext message from the ciphertext message without having the key, the first step is to figure out the length of the key string. The second step is to figure out each character of the key string by determining the corresponding shift. Exercises 21 and 22 deal with these two aspects.

- **21.** Suppose that when a long string of text is encrypted using a Vigenère cipher, the same string is found in the ciphertext starting at several different positions. Explain how this information can be used to help determine the length of the key.
- **22.** Once the length of the key string of a Vigènere cipher is known, explain how to determine each of its characters. Assume that the plaintext is long enough so that the frequency of its letters is reasonably close to the frequency of letters in typical English text.
- *23. Show that we can easily factor *n* when we know that *n* is the product of two primes, *p* and *q*, and we know the value of (p-1)(q-1).

In Exercises 24–27 first express your answers without computing modular exponentiations. Then use a computational aid to complete these computations.

- Encrypt the message ATTACK using the RSA system with $n = 43 \cdot 59$ and e = 13, translating each letter into integers and grouping together pairs of integers, as done in Example 8.
- (25) Encrypt the message UPLOAD using the RSA system with $n = 53 \cdot 61$ and e = 17, translating each letter into integers and grouping together pairs of integers, as done in Example 8.
- (26) What is the original message encrypted using the RSA system with $n = 53 \cdot 61$ and e = 17 if the encrypted message is 3185 2038 2460 2550? (To decrypt, first find the decryption exponent *d*, which is the inverse of e = 17 modulo $52 \cdot 60$.)
- (27.) What is the original message encrypted using the RSA system with $n = 43 \cdot 59$ and e = 13 if the encrypted message is 0667 1947 0671? (To decrypt, first find the decryption exponent *d* which is the inverse of e = 13 modulo $42 \cdot 58$.)

28. Suppose that (n, e) is an RSA encryption key, with n = pq where p and q are large primes and gcd(e, (p-1)(q-1)) = 1. Furthermore, suppose that d is an inverse of e modulo (p-1)(q-1). Suppose that $C \equiv M^e \pmod{pq}$. In the text we showed that RSA decryption, that is, the congruence $C^d \equiv M \pmod{pq}$ holds when gcd(M, pq) = 1. Show that this decryption congruence also holds when gcd(M, pq) > 1. [*Hint:* Use congruences modulo p and modulo q and apply the Chinese remainder theorem.]

- (29) Describe the steps that Alice and Bob follow when they use the Diffie-Hellman key exchange protocol to generate a shared key. Assume that they use the prime p = 23 and take a = 5, which is a primitive root of 23, and that Alice selects $k_1 = 8$ and Bob selects $k_2 = 5$. (You may want to use some computational aid.)
- **30.** Describe the steps that Alice and Bob follow when they use the Diffie-Hellman key exchange protocol to generate a shared key. Assume that they use the prime p = 101 and take a = 2, which is a primitive root of 101, and that Alice selects $k_1 = 7$ and Bob selects $k_2 = 9$. (You may want to use some computational aid.)

In Exercises 31–32 suppose that Alice and Bob have these public keys and corresponding private keys: $(n_{Alice}, e_{Alice}) = (2867, 7) = (61 \cdot 47, 7), \quad d_{Alice} = 1183 \text{ and } (n_{Bob}, e_{Bob}) = (3127, 21) = (59 \cdot 53, 21), \quad d_{Bob} = 1149$. First express your answers without carrying out the calculations. Then, using a computational aid, if available, perform the calculation to get the numerical answers.

- (31.) Alice wants to send to all her friends, including Bob, the message "SELL EVERYTHING" so that he knows that she sent it. What should she send to her friends, assuming she signs the message using the RSA cryptosystem.
- (32) Alice wants to send to Bob the message "BUY NOW" so that he knows that she sent it and so that only Bob can read it. What should she send to Bob, assuming she signs the message and then encrypts it using Bob's public key?
- **33.** We describe a basic key exchange protocol using private key cryptography upon which more sophisticated protocols for key exchange are based. Encryption within the protocol is done using a private key cryptosystem (such as AES) that is considered secure. The protocol involves three parties, Alice and Bob, who wish to exchange a key, and a trusted third party Cathy. Assume that Alice has a secret key k_{Alice} that only she and Cathy know, and Bob has a secret key k_{Bob} which only he and Cathy know. The protocol has three steps:

(*i*) Alice sends the trusted third party Cathy the message "request a shared key with Bob" encrypted using Alice's key k_{Alice} .

(*ii*) Cathy sends back to Alice a key $k_{Alice, Bob}$, which she generates, encrypted using the key k_{Alice} , followed by this same key $k_{Alice, Bob}$, encrypted using Bob's key, k_{Bob} .

(*iii*) Alice sends to Bob the key $k_{\text{Alice,Bob}}$ encrypted using k_{Bob} , known only to Bob and to Cathy.

Explain why this protocol allows Alice and Bob to share the secret key $k_{\text{Alice,Bob}}$, known only to them and to Cathy.